fastcpd.variance_estimation
Variance estimation for change point detection models.
1""" 2Variance estimation for change point detection models. 3""" 4 5import numpy 6 7 8def mean(data): 9 """ 10 Variance estimation for mean change models (Rice estimator). 11 12 data : array-like, shape (n, p) 13 Each row is a p-vector observation. 14 15 Returns 16 ------- 17 ndarray, shape (p, p) 18 Estimated variance-covariance matrix. 19 """ 20 data_matrix = numpy.asarray(data) 21 diffs = data_matrix[1:] - data_matrix[:-1] 22 return numpy.mean(diffs[:, :, None] * diffs[:, None, :], axis=0) / 2 23 24 25def median(data): 26 """ 27 Variance estimation for median change models (Rice estimator). 28 29 data : array-like, shape (n,) 30 Univariate series. 31 32 Returns 33 ------- 34 float 35 Estimated variance. 36 """ 37 data_flat = numpy.asarray(data).ravel() 38 return 2 * (2 * numpy.mean(numpy.abs(numpy.diff(data_flat))) / 3) ** 2
def
mean(data):
9def mean(data): 10 """ 11 Variance estimation for mean change models (Rice estimator). 12 13 data : array-like, shape (n, p) 14 Each row is a p-vector observation. 15 16 Returns 17 ------- 18 ndarray, shape (p, p) 19 Estimated variance-covariance matrix. 20 """ 21 data_matrix = numpy.asarray(data) 22 diffs = data_matrix[1:] - data_matrix[:-1] 23 return numpy.mean(diffs[:, :, None] * diffs[:, None, :], axis=0) / 2
Variance estimation for mean change models (Rice estimator).
data : array-like, shape (n, p) Each row is a p-vector observation.
Returns
ndarray, shape (p, p) Estimated variance-covariance matrix.
def
median(data):
26def median(data): 27 """ 28 Variance estimation for median change models (Rice estimator). 29 30 data : array-like, shape (n,) 31 Univariate series. 32 33 Returns 34 ------- 35 float 36 Estimated variance. 37 """ 38 data_flat = numpy.asarray(data).ravel() 39 return 2 * (2 * numpy.mean(numpy.abs(numpy.diff(data_flat))) / 3) ** 2
Variance estimation for median change models (Rice estimator).
data : array-like, shape (n,) Univariate series.
Returns
float Estimated variance.