fastcpd_mean()
and fastcpd.mean()
are wrapper
functions of fastcpd()
to find the mean change. The function is
similar to fastcpd()
except that the data is by default a matrix or
data frame or a vector with each row / element as an observation and thus a
formula is not required here.
Arguments
- data
A matrix, a data frame or a vector.
- ...
Other arguments passed to
fastcpd()
, for example,segment_count
.
Value
A fastcpd object.
Examples
if (requireNamespace("mvtnorm", quietly = TRUE)) {
set.seed(1)
p <- 3
data <- rbind(
mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)),
mvtnorm::rmvnorm(400, mean = rep(50, p), sigma = diag(100, p)),
mvtnorm::rmvnorm(300, mean = rep(2, p), sigma = diag(100, p))
)
result <- fastcpd.mean(data)
summary(result)
}
#>
#> Call:
#> fastcpd.mean(data = data)
#>
#> Change points:
#> 300 700
#>
#> Cost values:
#> 2558.102 3417.845 2551.517
set.seed(1)
data <- c(rnorm(10000), rnorm(1000) + 1)
(result_time <- system.time(
result <- fastcpd.mean(data, r.progress = FALSE, cp_only = TRUE)
))
#> user system elapsed
#> 0.083 0.135 0.076
result@cp_set
#> [1] 10007
# \donttest{
set.seed(1)
data <- c(rnorm(10000), rnorm(10000, 1), rnorm(10000))
(result_time <- system.time(
result <- fastcpd.mean(data, r.progress = FALSE, cp_only = TRUE)
))
#> user system elapsed
#> 0.527 0.274 0.472
result@cp_set
#> [1] 10007 19998
# }
# \donttest{
set.seed(1)
data <- c(rnorm(10000), rnorm(10000, 1), rnorm(10000))
(result_time <- system.time(
result <- fastcpd.mean(
data, beta = "BIC", cost_adjustment = "BIC",
r.progress = FALSE, cp_only = TRUE
)
))
#> user system elapsed
#> 0.248 0.268 0.191
result@cp_set
#> [1] 10034 20082
# }