Setup
Logistic regression
#' Cost function for Logistic regression, i.e. binomial family in GLM.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#' the response variable.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_glm_binomial <- function(data, family = "binomial") {
data <- as.matrix(data)
p <- dim(data)[2] - 1
out <- fastglm::fastglm(
as.matrix(data[, 1:p]), data[, p + 1],
family = family
)
return(out$deviance / 2)
}
#' Implementation of vanilla PELT for logistic regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#' likelihood values for each segment.
pelt_vanilla_binomial <- function(data, beta, cost = cost_glm_binomial) {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:m)
{
k <- set[i] + 1
cval[i] <- 0
if (t - k >= p - 1) cval[i] <- suppressWarnings(cost(data[k:t, ]))
}
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
Fobj <- c(Fobj, min_val)
}
cp <- cp_set[[n + 1]]
nLL <- 0
cp_loc <- unique(c(0, cp, n))
for (i in 1:(length(cp_loc) - 1))
{
seg <- (cp_loc[i] + 1):cp_loc[i + 1]
data_seg <- data[seg, ]
out <- fastglm::fastglm(
as.matrix(data_seg[, 1:p]), data_seg[, p + 1],
family = "binomial"
)
nLL <- out$deviance / 2 + nLL
}
output <- list(cp, nLL)
names(output) <- c("cp", "nLL")
return(output)
}
#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#' averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#' the Hessian matrix.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#' coefficients so far and all the Hessian matrices.
cost_logistic_update <- function(
data_new, coef, cum_coef, cmatrix, epsilon = 1e-10) {
p <- length(data_new) - 1
X_new <- data_new[1:p]
Y_new <- data_new[p + 1]
eta <- X_new %*% coef
mu <- 1 / (1 + exp(-eta))
cmatrix <- cmatrix + (X_new %o% X_new) * as.numeric((1 - mu) * mu)
lik_dev <- as.numeric(-(Y_new - mu)) * X_new
coef <- coef - solve(cmatrix + epsilon * diag(1, p), lik_dev)
cum_coef <- cum_coef + coef
return(list(coef, cum_coef, cmatrix))
}
#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_binomial <- function(data, b) {
p <- dim(data)[2] - 1
X <- data[, 1:p, drop = FALSE]
Y <- data[, p + 1, drop = FALSE]
u <- as.numeric(X %*% b)
L <- -Y * u + log(1 + exp(u))
return(sum(L))
}
#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#' beginning, ending and between change points.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#' likelihood for each segment based on the change points guess.
segd_binomial <- function(data, beta, B = 10, trim = 0.025) {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
# choose the initial values based on pre-segmentation
index <- rep(1:B, rep(n / B, B))
coef.int <- matrix(NA, B, p)
for (i in 1:B)
{
out <- fastglm::fastglm(
as.matrix(data[index == i, 1:p]),
data[index == i, p + 1],
family = "binomial"
)
coef.int[i, ] <- coef(out)
}
X1 <- data[1, 1:p]
cum_coef <- coef <- matrix(coef.int[1, ], p, 1)
e_eta <- exp(coef %*% X1)
const <- e_eta / (1 + e_eta)^2
cmatrix <- array((X1 %o% X1) * as.numeric(const), c(p, p, 1))
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:(m - 1))
{
coef_c <- coef[, i]
cum_coef_c <- cum_coef[, i]
cmatrix_c <- cmatrix[, , i]
out <- cost_logistic_update(data[t, ], coef_c, cum_coef_c, cmatrix_c)
coef[, i] <- out[[1]]
cum_coef[, i] <- out[[2]]
cmatrix[, , i] <- out[[3]]
k <- set[i] + 1
cval[i] <- 0
if (t - k >= p - 1) {
cval[i] <-
neg_log_lik_binomial(data[k:t, ], cum_coef[, i] / (t - k + 1))
}
}
# the choice of initial values requires further investigation
cval[m] <- 0
Xt <- data[t, 1:p]
cum_coef_add <- coef_add <- coef.int[index[t], ]
e_eta_t <- exp(coef_add %*% Xt)
const <- e_eta_t / (1 + e_eta_t)^2
cmatrix_add <- (Xt %o% Xt) * as.numeric(const)
coef <- cbind(coef, coef_add)
cum_coef <- cbind(cum_coef, cum_coef_add)
cmatrix <- abind::abind(cmatrix, cmatrix_add, along = 3)
# Adding a momentum term (TBD)
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
coef <- coef[, ind2, drop = FALSE]
cum_coef <- cum_coef[, ind2, drop = FALSE]
cmatrix <- cmatrix[, , ind2, drop = FALSE]
Fobj <- c(Fobj, min_val)
}
# Remove change-points close to the boundaries
cp <- cp_set[[n + 1]]
if (length(cp) > 0) {
ind3 <- (seq_len(length(cp)))[(cp < trim * n) | (cp > (1 - trim) * n)]
cp <- cp[-ind3]
}
nLL <- 0
cp_loc <- unique(c(0, cp, n))
for (i in 1:(length(cp_loc) - 1))
{
seg <- (cp_loc[i] + 1):cp_loc[i + 1]
data_seg <- data[seg, ]
out <- fastglm::fastglm(
as.matrix(data_seg[, 1:p]), data_seg[, p + 1],
family = "binomial"
)
nLL <- out$deviance / 2 + nLL
}
output <- list(cp, nLL)
names(output) <- c("cp", "nLL")
return(output)
}
Poisson regression
#' Cost function for Poisson regression.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#' the response variable.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_glm_poisson <- function(data, family = "poisson") {
data <- as.matrix(data)
p <- dim(data)[2] - 1
out <- fastglm::fastglm(as.matrix(data[, 1:p]), data[, p + 1], family = family)
return(out$deviance / 2)
}
#' Implementation of vanilla PELT for poisson regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#' likelihood values for each segment.
pelt_vanilla_poisson <- function(data, beta, cost = cost_glm_poisson) {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:m)
{
k <- set[i] + 1
if (t - k >= p - 1) cval[i] <- suppressWarnings(cost(data[k:t, ])) else cval[i] <- 0
}
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
Fobj <- c(Fobj, min_val)
# if (t %% 100 == 0) print(t)
}
cp <- cp_set[[n + 1]]
output <- list(cp)
names(output) <- c("cp")
return(output)
}
#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#' averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#' the Hessian matrix.
#' @param G Upper bound for the coefficient.
#' @param L Winsorization lower bound.
#' @param H Winsorization upper bound.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#' coefficients so far and all the Hessian matrices.
cost_poisson_update <- function(data_new, coef, cum_coef, cmatrix, epsilon = 0.001, G = 10^10, L = -20, H = 20) {
p <- length(data_new) - 1
X_new <- data_new[1:p]
Y_new <- data_new[p + 1]
eta <- X_new %*% coef
mu <- exp(eta)
cmatrix <- cmatrix + (X_new %o% X_new) * min(as.numeric(mu), G)
lik_dev <- as.numeric(-(Y_new - mu)) * X_new
coef <- coef - solve(cmatrix + epsilon * diag(1, p), lik_dev)
coef <- pmin(pmax(coef, L), H)
cum_coef <- cum_coef + coef
return(list(coef, cum_coef, cmatrix))
}
#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_poisson <- function(data, b) {
p <- dim(data)[2] - 1
X <- data[, 1:p, drop = FALSE]
Y <- data[, p + 1, drop = FALSE]
u <- as.numeric(X %*% b)
L <- -Y * u + exp(u) + lfactorial(Y)
return(sum(L))
}
#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#' beginning, ending and between change points.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#' the Hessian matrix.
#' @param G Upper bound for the coefficient.
#' @param L Winsorization lower bound.
#' @param H Winsorization upper bound.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#' likelihood for each segment based on the change points guess.
segd_poisson <- function(data, beta, B = 10, trim = 0.03, epsilon = 0.001, G = 10^10, L = -20, H = 20) {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
# choose the initial values based on pre-segmentation
index <- rep(1:B, rep(n / B, B))
coef.int <- matrix(NA, B, p)
for (i in 1:B)
{
out <- fastglm::fastglm(x = as.matrix(data[index == i, 1:p]), y = data[index == i, p + 1], family = "poisson")
coef.int[i, ] <- coef(out)
}
X1 <- data[1, 1:p]
cum_coef <- coef <- pmin(pmax(matrix(coef.int[1, ], p, 1), L), H)
e_eta <- exp(coef %*% X1)
const <- e_eta
cmatrix <- array((X1 %o% X1) * as.numeric(const), c(p, p, 1))
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:(m - 1))
{
coef_c <- coef[, i]
cum_coef_c <- cum_coef[, i]
cmatrix_c <- cmatrix[, , i]
out <- cost_poisson_update(data[t, ], coef_c, cum_coef_c, cmatrix_c, epsilon = epsilon, G = G, L = L, H = H)
coef[, i] <- out[[1]]
cum_coef[, i] <- out[[2]]
cmatrix[, , i] <- out[[3]]
k <- set[i] + 1
cum_coef_win <- pmin(pmax(cum_coef[, i] / (t - k + 1), L), H)
if (t - k >= p - 1) cval[i] <- neg_log_lik_poisson(data[k:t, ], cum_coef_win) else cval[i] <- 0
}
# the choice of initial values requires further investigation
cval[m] <- 0
Xt <- data[t, 1:p]
cum_coef_add <- coef_add <- pmin(pmax(coef.int[index[t], ], L), H)
e_eta_t <- exp(coef_add %*% Xt)
const <- e_eta_t
cmatrix_add <- (Xt %o% Xt) * as.numeric(const)
coef <- cbind(coef, coef_add)
cum_coef <- cbind(cum_coef, cum_coef_add)
cmatrix <- abind::abind(cmatrix, cmatrix_add, along = 3)
# Adding a momentum term (TBD)
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
coef <- coef[, ind2, drop = FALSE]
cum_coef <- cum_coef[, ind2, drop = FALSE]
cmatrix <- cmatrix[, , ind2, drop = FALSE]
Fobj <- c(Fobj, min_val)
}
# Remove change-points close to the boundaries
cp <- cp_set[[n + 1]]
if (length(cp) > 0) {
ind3 <- (1:length(cp))[(cp < trim * n) | (cp > (1 - trim) * n)]
if (length(ind3) > 0) cp <- cp[-ind3]
}
cp <- sort(unique(c(0, cp)))
index <- which((diff(cp) < trim * n) == TRUE)
if (length(index) > 0) cp <- floor((cp[-(index + 1)] + cp[-index]) / 2)
cp <- cp[cp > 0]
# nLL <- 0
# cp_loc <- unique(c(0,cp,n))
# for(i in 1:(length(cp_loc)-1))
# {
# seg <- (cp_loc[i]+1):cp_loc[i+1]
# data_seg <- data[seg,]
# out <- fastglm(as.matrix(data_seg[, 1:p]), data_seg[, p+1], family="Poisson")
# nLL <- out$deviance/2 + nLL
# }
# output <- list(cp, nLL)
# names(output) <- c("cp", "nLL")
output <- list(cp)
names(output) <- c("cp")
return(output)
}
# Generate data from poisson regression models with change-points
#' @param n Number of observations.
#' @param d Dimension of the covariates.
#' @param true.coef True regression coefficients.
#' @param true.cp.loc True change-point locations.
#' @param Sigma Covariance matrix of the covariates.
#' @keywords internal
#'
#' @noRd
#' @return A list containing the generated data and the true cluster
#' assignments.
data_gen_poisson <- function(n, d, true.coef, true.cp.loc, Sigma) {
loc <- unique(c(0, true.cp.loc, n))
if (dim(true.coef)[2] != length(loc) - 1) stop("true.coef and true.cp.loc do not match")
x <- mvtnorm::rmvnorm(n, mean = rep(0, d), sigma = Sigma)
y <- NULL
for (i in 1:(length(loc) - 1))
{
mu <- exp(x[(loc[i] + 1):loc[i + 1], , drop = FALSE] %*% true.coef[, i, drop = FALSE])
group <- rpois(length(mu), mu)
y <- c(y, group)
}
data <- cbind(x, y)
true_cluster <- rep(1:(length(loc) - 1), diff(loc))
result <- list(data, true_cluster)
return(result)
}
Penalized linear regression
#' Cost function for penalized linear regression.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#' the response variable.
#' @param lambda Penalty coefficient.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_lasso <- function(data, lambda, family = "gaussian") {
data <- as.matrix(data)
n <- dim(data)[1]
p <- dim(data)[2] - 1
out <- glmnet::glmnet(as.matrix(data[, 1:p]), data[, p + 1], family = family, lambda = lambda)
return(deviance(out) / 2)
}
#' Implementation of vanilla PELT for penalized linear regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#' likelihood values for each segment.
pelt_vanilla_lasso <- function(data, beta, B = 10, cost = cost_lasso, family = "gaussian") {
n <- dim(data)[1]
p <- dim(data)[2] - 1
index <- rep(1:B, rep(n / B, B))
err_sd <- act_num <- rep(NA, B)
for (i in 1:B)
{
cvfit <- glmnet::cv.glmnet(as.matrix(data[index == i, 1:p]), data[index == i, p + 1], family = family)
coef <- coef(cvfit, s = "lambda.1se")[-1]
resi <- data[index == i, p + 1] - as.matrix(data[index == i, 1:p]) %*% as.numeric(coef)
err_sd[i] <- sqrt(mean(resi^2))
act_num[i] <- sum(abs(coef) > 0)
}
err_sd_mean <- mean(err_sd) # only works if error sd is unchanged.
act_num_mean <- mean(act_num)
beta <- (act_num_mean + 1) * beta # seems to work but there might be better choices
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:m)
{
k <- set[i] + 1
if (t - k >= 1) cval[i] <- suppressWarnings(cost(data[k:t, ], lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1)))) else cval[i] <- 0
}
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
Fobj <- c(Fobj, min_val)
if (t %% 100 == 0) print(t)
}
cp <- cp_set[[n + 1]]
# nLL <- 0
# cp_loc <- unique(c(0,cp,n))
# for(i in 1:(length(cp_loc)-1))
# {
# seg <- (cp_loc[i]+1):cp_loc[i+1]
# data_seg <- data[seg,]
# out <- glmnet(as.matrix(data_seg[, 1:p]), data_seg[, p+1], lambda=lambda, family=family)
# nLL <- deviance(out)/2 + nLL
# }
# output <- list(cp, nLL)
output <- list(cp)
names(output) <- c("cp")
return(output)
}
#' Function to update the coefficients using gradient descent.
#' @param a Coefficient to be updated.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Updated coefficient.
soft_threshold <- function(a, lambda) {
sign(a) * pmax(abs(a) - lambda, 0)
}
#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#' averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#' coefficients so far and all the Hessian matrices.
cost_lasso_update <- function(data_new, coef, cum_coef, cmatrix, lambda) {
p <- length(data_new) - 1
X_new <- data_new[1:p]
Y_new <- data_new[p + 1]
mu <- X_new %*% coef
cmatrix <- cmatrix + X_new %o% X_new
# B <- as.vector(cmatrix_inv%*%X_new)
# cmatrix_inv <- cmatrix_inv - B%o%B/(1+sum(X_new*B))
lik_dev <- as.numeric(-(Y_new - mu)) * X_new
coef <- coef - solve(cmatrix, lik_dev)
nc <- norm(cmatrix, type = "F") # the choice of norm affects the speed. Spectral norm is more accurate but slower than F norm.
coef <- soft_threshold(coef, lambda / nc)
cum_coef <- cum_coef + coef
return(list(coef, cum_coef, cmatrix))
}
#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_lasso <- function(data, b, lambda) {
p <- dim(data)[2] - 1
X <- data[, 1:p, drop = FALSE]
Y <- data[, p + 1, drop = FALSE]
resi <- Y - X %*% b
L <- sum(resi^2) / 2 + lambda * sum(abs(b))
return(L)
}
#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#' beginning, ending and between change points.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#' the Hessian matrix.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#' likelihood for each segment based on the change points guess.
segd_lasso <- function(data, beta, B = 10, trim = 0.025, epsilon = 1e-5, family = "gaussian") {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
# choose the initial values based on pre-segmentation
index <- rep(1:B, rep(n / B, B))
coef.int <- matrix(NA, B, p)
err_sd <- act_num <- rep(NA, B)
for (i in 1:B)
{
cvfit <- glmnet::cv.glmnet(as.matrix(data[index == i, 1:p]), data[index == i, p + 1], family = family)
coef.int[i, ] <- coef(cvfit, s = "lambda.1se")[-1]
resi <- data[index == i, p + 1] - as.matrix(data[index == i, 1:p]) %*% as.numeric(coef.int[i, ])
err_sd[i] <- sqrt(mean(resi^2))
act_num[i] <- sum(abs(coef.int[i, ]) > 0)
}
err_sd_mean <- mean(err_sd) # only works if error sd is unchanged.
act_num_mean <- mean(act_num)
beta <- (act_num_mean + 1) * beta # seems to work but there might be better choices
X1 <- data[1, 1:p]
cum_coef <- coef <- matrix(coef.int[1, ], p, 1)
eta <- coef %*% X1
# c_int <- diag(1/epsilon,p) - X1%o%X1/epsilon^2/(1+sum(X1^2)/epsilon)
# cmatrix_inv <- array(c_int, c(p,p,1))
cmatrix <- array(X1 %o% X1 + epsilon * diag(1, p), c(p, p, 1))
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:(m - 1))
{
coef_c <- coef[, i]
cum_coef_c <- cum_coef[, i]
# cmatrix_inv_c <- cmatrix_inv[,,i]
cmatrix_c <- cmatrix[, , i]
k <- set[i] + 1
out <- cost_lasso_update(data[t, ], coef_c, cum_coef_c, cmatrix_c, lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1)))
coef[, i] <- out[[1]]
cum_coef[, i] <- out[[2]]
# cmatrix_inv[,,i] <- out[[3]]
cmatrix[, , i] <- out[[3]]
if (t - k >= 2) cval[i] <- neg_log_lik_lasso(data[k:t, ], cum_coef[, i] / (t - k + 1), lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1))) else cval[i] <- 0
}
# the choice of initial values requires further investigation
cval[m] <- 0
Xt <- data[t, 1:p]
cum_coef_add <- coef_add <- coef.int[index[t], ]
# cmatrix_inv_add <- diag(1/epsilon,p) - Xt%o%Xt/epsilon^2/(1+sum(Xt^2)/epsilon)
coef <- cbind(coef, coef_add)
cum_coef <- cbind(cum_coef, cum_coef_add)
# cmatrix_inv <- abind::abind(cmatrix_inv, cmatrix_inv_add, along=3)
cmatrix <- abind::abind(cmatrix, Xt %o% Xt + epsilon * diag(1, p), along = 3)
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
coef <- coef[, ind2, drop = FALSE]
cum_coef <- cum_coef[, ind2, drop = FALSE]
cmatrix <- cmatrix[, , ind2, drop = FALSE]
# cmatrix_inv <- cmatrix_inv[,,ind2,drop=FALSE]
Fobj <- c(Fobj, min_val)
}
# Remove change-points close to the boundaries and merge change-points
cp <- cp_set[[n + 1]]
if (length(cp) > 0) {
ind3 <- (1:length(cp))[(cp < trim * n) | (cp > (1 - trim) * n)]
if (length(ind3) > 0) cp <- cp[-ind3]
}
cp <- sort(unique(c(0, cp)))
index <- which((diff(cp) < trim * n) == TRUE)
if (length(index) > 0) cp <- floor((cp[-(index + 1)] + cp[-index]) / 2)
cp <- cp[cp > 0]
# nLL <- 0
# cp_loc <- unique(c(0,cp,n))
# for(i in 1:(length(cp_loc)-1))
# {
# seg <- (cp_loc[i]+1):cp_loc[i+1]
# data_seg <- data[seg,]
# out <- fastglm(as.matrix(data_seg[, 1:p]), data_seg[, p+1], family="binomial")
# nLL <- out$deviance/2 + nLL
# }
output <- list(cp)
names(output) <- c("cp")
return(output)
}
# Generate data from penalized linear regression models with change-points
#' @param n Number of observations.
#' @param d Dimension of the covariates.
#' @param true.coef True regression coefficients.
#' @param true.cp.loc True change-point locations.
#' @param Sigma Covariance matrix of the covariates.
#' @param evar Error variance.
#' @keywords internal
#'
#' @noRd
#' @return A list containing the generated data and the true cluster
#' assignments.
data_gen_lasso <- function(n, d, true.coef, true.cp.loc, Sigma, evar) {
loc <- unique(c(0, true.cp.loc, n))
if (dim(true.coef)[2] != length(loc) - 1) stop("true.coef and true.cp.loc do not match")
x <- mvtnorm::rmvnorm(n, mean = rep(0, d), sigma = Sigma)
y <- NULL
for (i in 1:(length(loc) - 1))
{
Xb <- x[(loc[i] + 1):loc[i + 1], , drop = FALSE] %*% true.coef[, i, drop = FALSE]
add <- Xb + rnorm(length(Xb), sd = sqrt(evar))
y <- c(y, add)
}
data <- cbind(x, y)
true_cluster <- rep(1:(length(loc) - 1), diff(loc))
result <- list(data, true_cluster)
return(result)
}
Logistic regression
set.seed(1)
p <- 5
x <- matrix(rnorm(300 * p, 0, 1), ncol = p)
# Randomly generate coefficients with different means.
theta <- rbind(rnorm(p, 0, 1), rnorm(p, 2, 1))
# Randomly generate response variables based on the segmented data and
# corresponding coefficients
y <- c(
rbinom(125, 1, 1 / (1 + exp(-x[1:125, ] %*% theta[1, ]))),
rbinom(300 - 125, 1, 1 / (1 + exp(-x[(125 + 1):300, ] %*% theta[2, ])))
)
segd_binomial(cbind(x, y), (p + 1) * log(300) / 2, B = 5)$cp
#> [1] 125
fastcpd.binomial(
cbind(y, x),
segment_count = 5,
beta = "BIC",
cost_adjustment = "BIC",
r.progress = FALSE
)@cp_set
#> [1] 125
pelt_vanilla_binomial(cbind(x, y), (p + 1) * log(300) / 2)$cp
#> [1] 0 125
fastcpd.binomial(
cbind(y, x),
segment_count = 5,
vanilla_percentage = 1,
beta = "BIC",
cost_adjustment = "BIC",
r.progress = FALSE
)@cp_set
#> [1] 125
Poisson regression
set.seed(1)
n <- 1500
d <- 5
rho <- 0.9
Sigma <- array(0, c(d, d))
for (i in 1:d) {
Sigma[i, ] <- rho^(abs(i - (1:d)))
}
delta <- c(5, 7, 9, 11, 13)
a.sq <- 1
delta.new <-
delta * sqrt(a.sq) / sqrt(as.numeric(t(delta) %*% Sigma %*% delta))
true.cp.loc <- c(375, 750, 1125)
# regression coefficients
true.coef <- matrix(0, nrow = d, ncol = length(true.cp.loc) + 1)
true.coef[, 1] <- c(1, 1.2, -1, 0.5, -2)
true.coef[, 2] <- true.coef[, 1] + delta.new
true.coef[, 3] <- true.coef[, 1]
true.coef[, 4] <- true.coef[, 3] - delta.new
out <- data_gen_poisson(n, d, true.coef, true.cp.loc, Sigma)
data <- out[[1]]
g_tr <- out[[2]]
beta <- log(n) * (d + 1) / 2
segd_poisson(
data, beta, trim = 0.03, B = 10, epsilon = 0.001, G = 10^10, L = -20, H = 20
)$cp
#> [1] 380 751 1136 1251
fastcpd.poisson(
cbind(data[, d + 1], data[, 1:d]),
beta = beta,
cost_adjustment = "BIC",
epsilon = 0.001,
segment_count = 10,
r.progress = FALSE
)@cp_set
#> [1] 380 751 1136 1251
pelt_vanilla_poisson(data, beta)$cp
#> [1] 0 374 752 1133
fastcpd.poisson(
cbind(data[, d + 1], data[, 1:d]),
segment_count = 10,
vanilla_percentage = 1,
beta = beta,
cost_adjustment = "BIC",
r.progress = FALSE
)@cp_set
#> [1] 374 752 1133
Penalized linear regression
set.seed(1)
n <- 1000
s <- 3
d <- 50
evar <- 0.5
Sigma <- diag(1, d)
true.cp.loc <- c(100, 300, 500, 800, 900)
seg <- length(true.cp.loc) + 1
true.coef <- matrix(rnorm(seg * s), s, seg)
true.coef <- rbind(true.coef, matrix(0, d - s, seg))
out <- data_gen_lasso(n, d, true.coef, true.cp.loc, Sigma, evar)
data <- out[[1]]
beta <- log(n) / 2 # beta here has different meaning
segd_lasso(data, beta, B = 10, trim = 0.025)$cp
#> [1] 100 300 520 800 901
fastcpd.lasso(
cbind(data[, d + 1], data[, 1:d]),
epsilon = 1e-5,
beta = beta,
cost_adjustment = "BIC",
pruning_coef = 0,
r.progress = FALSE
)@cp_set
#> [1] 100 300 520 800 901
pelt_vanilla_lasso(data, beta, cost = cost_lasso)$cp
#> [1] 100
#> [1] 200
#> [1] 300
#> [1] 400
#> [1] 500
#> [1] 600
#> [1] 700
#> [1] 800
#> [1] 900
#> [1] 1000
#> [1] 0 103 299 510 800 900
fastcpd.lasso(
cbind(data[, d + 1], data[, 1:d]),
vanilla_percentage = 1,
epsilon = 1e-5,
beta = beta,
cost_adjustment = "BIC",
pruning_coef = 0,
r.progress = FALSE
)@cp_set
#> [1] 103 299 510 800 900
Appendix: all code snippets
knitr::opts_chunk$set(
collapse = TRUE, comment = "#>", eval = FALSE, cache = FALSE,
warning = FALSE, fig.width = 8, fig.height = 5
)
library(fastcpd)
#' Cost function for Logistic regression, i.e. binomial family in GLM.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#' the response variable.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_glm_binomial <- function(data, family = "binomial") {
data <- as.matrix(data)
p <- dim(data)[2] - 1
out <- fastglm::fastglm(
as.matrix(data[, 1:p]), data[, p + 1],
family = family
)
return(out$deviance / 2)
}
#' Implementation of vanilla PELT for logistic regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#' likelihood values for each segment.
pelt_vanilla_binomial <- function(data, beta, cost = cost_glm_binomial) {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:m)
{
k <- set[i] + 1
cval[i] <- 0
if (t - k >= p - 1) cval[i] <- suppressWarnings(cost(data[k:t, ]))
}
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
Fobj <- c(Fobj, min_val)
}
cp <- cp_set[[n + 1]]
nLL <- 0
cp_loc <- unique(c(0, cp, n))
for (i in 1:(length(cp_loc) - 1))
{
seg <- (cp_loc[i] + 1):cp_loc[i + 1]
data_seg <- data[seg, ]
out <- fastglm::fastglm(
as.matrix(data_seg[, 1:p]), data_seg[, p + 1],
family = "binomial"
)
nLL <- out$deviance / 2 + nLL
}
output <- list(cp, nLL)
names(output) <- c("cp", "nLL")
return(output)
}
#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#' averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#' the Hessian matrix.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#' coefficients so far and all the Hessian matrices.
cost_logistic_update <- function(
data_new, coef, cum_coef, cmatrix, epsilon = 1e-10) {
p <- length(data_new) - 1
X_new <- data_new[1:p]
Y_new <- data_new[p + 1]
eta <- X_new %*% coef
mu <- 1 / (1 + exp(-eta))
cmatrix <- cmatrix + (X_new %o% X_new) * as.numeric((1 - mu) * mu)
lik_dev <- as.numeric(-(Y_new - mu)) * X_new
coef <- coef - solve(cmatrix + epsilon * diag(1, p), lik_dev)
cum_coef <- cum_coef + coef
return(list(coef, cum_coef, cmatrix))
}
#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_binomial <- function(data, b) {
p <- dim(data)[2] - 1
X <- data[, 1:p, drop = FALSE]
Y <- data[, p + 1, drop = FALSE]
u <- as.numeric(X %*% b)
L <- -Y * u + log(1 + exp(u))
return(sum(L))
}
#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#' beginning, ending and between change points.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#' likelihood for each segment based on the change points guess.
segd_binomial <- function(data, beta, B = 10, trim = 0.025) {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
# choose the initial values based on pre-segmentation
index <- rep(1:B, rep(n / B, B))
coef.int <- matrix(NA, B, p)
for (i in 1:B)
{
out <- fastglm::fastglm(
as.matrix(data[index == i, 1:p]),
data[index == i, p + 1],
family = "binomial"
)
coef.int[i, ] <- coef(out)
}
X1 <- data[1, 1:p]
cum_coef <- coef <- matrix(coef.int[1, ], p, 1)
e_eta <- exp(coef %*% X1)
const <- e_eta / (1 + e_eta)^2
cmatrix <- array((X1 %o% X1) * as.numeric(const), c(p, p, 1))
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:(m - 1))
{
coef_c <- coef[, i]
cum_coef_c <- cum_coef[, i]
cmatrix_c <- cmatrix[, , i]
out <- cost_logistic_update(data[t, ], coef_c, cum_coef_c, cmatrix_c)
coef[, i] <- out[[1]]
cum_coef[, i] <- out[[2]]
cmatrix[, , i] <- out[[3]]
k <- set[i] + 1
cval[i] <- 0
if (t - k >= p - 1) {
cval[i] <-
neg_log_lik_binomial(data[k:t, ], cum_coef[, i] / (t - k + 1))
}
}
# the choice of initial values requires further investigation
cval[m] <- 0
Xt <- data[t, 1:p]
cum_coef_add <- coef_add <- coef.int[index[t], ]
e_eta_t <- exp(coef_add %*% Xt)
const <- e_eta_t / (1 + e_eta_t)^2
cmatrix_add <- (Xt %o% Xt) * as.numeric(const)
coef <- cbind(coef, coef_add)
cum_coef <- cbind(cum_coef, cum_coef_add)
cmatrix <- abind::abind(cmatrix, cmatrix_add, along = 3)
# Adding a momentum term (TBD)
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
coef <- coef[, ind2, drop = FALSE]
cum_coef <- cum_coef[, ind2, drop = FALSE]
cmatrix <- cmatrix[, , ind2, drop = FALSE]
Fobj <- c(Fobj, min_val)
}
# Remove change-points close to the boundaries
cp <- cp_set[[n + 1]]
if (length(cp) > 0) {
ind3 <- (seq_len(length(cp)))[(cp < trim * n) | (cp > (1 - trim) * n)]
cp <- cp[-ind3]
}
nLL <- 0
cp_loc <- unique(c(0, cp, n))
for (i in 1:(length(cp_loc) - 1))
{
seg <- (cp_loc[i] + 1):cp_loc[i + 1]
data_seg <- data[seg, ]
out <- fastglm::fastglm(
as.matrix(data_seg[, 1:p]), data_seg[, p + 1],
family = "binomial"
)
nLL <- out$deviance / 2 + nLL
}
output <- list(cp, nLL)
names(output) <- c("cp", "nLL")
return(output)
}
#' Cost function for Poisson regression.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#' the response variable.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_glm_poisson <- function(data, family = "poisson") {
data <- as.matrix(data)
p <- dim(data)[2] - 1
out <- fastglm::fastglm(as.matrix(data[, 1:p]), data[, p + 1], family = family)
return(out$deviance / 2)
}
#' Implementation of vanilla PELT for poisson regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#' likelihood values for each segment.
pelt_vanilla_poisson <- function(data, beta, cost = cost_glm_poisson) {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:m)
{
k <- set[i] + 1
if (t - k >= p - 1) cval[i] <- suppressWarnings(cost(data[k:t, ])) else cval[i] <- 0
}
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
Fobj <- c(Fobj, min_val)
# if (t %% 100 == 0) print(t)
}
cp <- cp_set[[n + 1]]
output <- list(cp)
names(output) <- c("cp")
return(output)
}
#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#' averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#' the Hessian matrix.
#' @param G Upper bound for the coefficient.
#' @param L Winsorization lower bound.
#' @param H Winsorization upper bound.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#' coefficients so far and all the Hessian matrices.
cost_poisson_update <- function(data_new, coef, cum_coef, cmatrix, epsilon = 0.001, G = 10^10, L = -20, H = 20) {
p <- length(data_new) - 1
X_new <- data_new[1:p]
Y_new <- data_new[p + 1]
eta <- X_new %*% coef
mu <- exp(eta)
cmatrix <- cmatrix + (X_new %o% X_new) * min(as.numeric(mu), G)
lik_dev <- as.numeric(-(Y_new - mu)) * X_new
coef <- coef - solve(cmatrix + epsilon * diag(1, p), lik_dev)
coef <- pmin(pmax(coef, L), H)
cum_coef <- cum_coef + coef
return(list(coef, cum_coef, cmatrix))
}
#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_poisson <- function(data, b) {
p <- dim(data)[2] - 1
X <- data[, 1:p, drop = FALSE]
Y <- data[, p + 1, drop = FALSE]
u <- as.numeric(X %*% b)
L <- -Y * u + exp(u) + lfactorial(Y)
return(sum(L))
}
#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#' beginning, ending and between change points.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#' the Hessian matrix.
#' @param G Upper bound for the coefficient.
#' @param L Winsorization lower bound.
#' @param H Winsorization upper bound.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#' likelihood for each segment based on the change points guess.
segd_poisson <- function(data, beta, B = 10, trim = 0.03, epsilon = 0.001, G = 10^10, L = -20, H = 20) {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
# choose the initial values based on pre-segmentation
index <- rep(1:B, rep(n / B, B))
coef.int <- matrix(NA, B, p)
for (i in 1:B)
{
out <- fastglm::fastglm(x = as.matrix(data[index == i, 1:p]), y = data[index == i, p + 1], family = "poisson")
coef.int[i, ] <- coef(out)
}
X1 <- data[1, 1:p]
cum_coef <- coef <- pmin(pmax(matrix(coef.int[1, ], p, 1), L), H)
e_eta <- exp(coef %*% X1)
const <- e_eta
cmatrix <- array((X1 %o% X1) * as.numeric(const), c(p, p, 1))
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:(m - 1))
{
coef_c <- coef[, i]
cum_coef_c <- cum_coef[, i]
cmatrix_c <- cmatrix[, , i]
out <- cost_poisson_update(data[t, ], coef_c, cum_coef_c, cmatrix_c, epsilon = epsilon, G = G, L = L, H = H)
coef[, i] <- out[[1]]
cum_coef[, i] <- out[[2]]
cmatrix[, , i] <- out[[3]]
k <- set[i] + 1
cum_coef_win <- pmin(pmax(cum_coef[, i] / (t - k + 1), L), H)
if (t - k >= p - 1) cval[i] <- neg_log_lik_poisson(data[k:t, ], cum_coef_win) else cval[i] <- 0
}
# the choice of initial values requires further investigation
cval[m] <- 0
Xt <- data[t, 1:p]
cum_coef_add <- coef_add <- pmin(pmax(coef.int[index[t], ], L), H)
e_eta_t <- exp(coef_add %*% Xt)
const <- e_eta_t
cmatrix_add <- (Xt %o% Xt) * as.numeric(const)
coef <- cbind(coef, coef_add)
cum_coef <- cbind(cum_coef, cum_coef_add)
cmatrix <- abind::abind(cmatrix, cmatrix_add, along = 3)
# Adding a momentum term (TBD)
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
coef <- coef[, ind2, drop = FALSE]
cum_coef <- cum_coef[, ind2, drop = FALSE]
cmatrix <- cmatrix[, , ind2, drop = FALSE]
Fobj <- c(Fobj, min_val)
}
# Remove change-points close to the boundaries
cp <- cp_set[[n + 1]]
if (length(cp) > 0) {
ind3 <- (1:length(cp))[(cp < trim * n) | (cp > (1 - trim) * n)]
if (length(ind3) > 0) cp <- cp[-ind3]
}
cp <- sort(unique(c(0, cp)))
index <- which((diff(cp) < trim * n) == TRUE)
if (length(index) > 0) cp <- floor((cp[-(index + 1)] + cp[-index]) / 2)
cp <- cp[cp > 0]
# nLL <- 0
# cp_loc <- unique(c(0,cp,n))
# for(i in 1:(length(cp_loc)-1))
# {
# seg <- (cp_loc[i]+1):cp_loc[i+1]
# data_seg <- data[seg,]
# out <- fastglm(as.matrix(data_seg[, 1:p]), data_seg[, p+1], family="Poisson")
# nLL <- out$deviance/2 + nLL
# }
# output <- list(cp, nLL)
# names(output) <- c("cp", "nLL")
output <- list(cp)
names(output) <- c("cp")
return(output)
}
# Generate data from poisson regression models with change-points
#' @param n Number of observations.
#' @param d Dimension of the covariates.
#' @param true.coef True regression coefficients.
#' @param true.cp.loc True change-point locations.
#' @param Sigma Covariance matrix of the covariates.
#' @keywords internal
#'
#' @noRd
#' @return A list containing the generated data and the true cluster
#' assignments.
data_gen_poisson <- function(n, d, true.coef, true.cp.loc, Sigma) {
loc <- unique(c(0, true.cp.loc, n))
if (dim(true.coef)[2] != length(loc) - 1) stop("true.coef and true.cp.loc do not match")
x <- mvtnorm::rmvnorm(n, mean = rep(0, d), sigma = Sigma)
y <- NULL
for (i in 1:(length(loc) - 1))
{
mu <- exp(x[(loc[i] + 1):loc[i + 1], , drop = FALSE] %*% true.coef[, i, drop = FALSE])
group <- rpois(length(mu), mu)
y <- c(y, group)
}
data <- cbind(x, y)
true_cluster <- rep(1:(length(loc) - 1), diff(loc))
result <- list(data, true_cluster)
return(result)
}
#' Cost function for penalized linear regression.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#' the response variable.
#' @param lambda Penalty coefficient.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_lasso <- function(data, lambda, family = "gaussian") {
data <- as.matrix(data)
n <- dim(data)[1]
p <- dim(data)[2] - 1
out <- glmnet::glmnet(as.matrix(data[, 1:p]), data[, p + 1], family = family, lambda = lambda)
return(deviance(out) / 2)
}
#' Implementation of vanilla PELT for penalized linear regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#' likelihood values for each segment.
pelt_vanilla_lasso <- function(data, beta, B = 10, cost = cost_lasso, family = "gaussian") {
n <- dim(data)[1]
p <- dim(data)[2] - 1
index <- rep(1:B, rep(n / B, B))
err_sd <- act_num <- rep(NA, B)
for (i in 1:B)
{
cvfit <- glmnet::cv.glmnet(as.matrix(data[index == i, 1:p]), data[index == i, p + 1], family = family)
coef <- coef(cvfit, s = "lambda.1se")[-1]
resi <- data[index == i, p + 1] - as.matrix(data[index == i, 1:p]) %*% as.numeric(coef)
err_sd[i] <- sqrt(mean(resi^2))
act_num[i] <- sum(abs(coef) > 0)
}
err_sd_mean <- mean(err_sd) # only works if error sd is unchanged.
act_num_mean <- mean(act_num)
beta <- (act_num_mean + 1) * beta # seems to work but there might be better choices
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:m)
{
k <- set[i] + 1
if (t - k >= 1) cval[i] <- suppressWarnings(cost(data[k:t, ], lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1)))) else cval[i] <- 0
}
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
Fobj <- c(Fobj, min_val)
if (t %% 100 == 0) print(t)
}
cp <- cp_set[[n + 1]]
# nLL <- 0
# cp_loc <- unique(c(0,cp,n))
# for(i in 1:(length(cp_loc)-1))
# {
# seg <- (cp_loc[i]+1):cp_loc[i+1]
# data_seg <- data[seg,]
# out <- glmnet(as.matrix(data_seg[, 1:p]), data_seg[, p+1], lambda=lambda, family=family)
# nLL <- deviance(out)/2 + nLL
# }
# output <- list(cp, nLL)
output <- list(cp)
names(output) <- c("cp")
return(output)
}
#' Function to update the coefficients using gradient descent.
#' @param a Coefficient to be updated.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Updated coefficient.
soft_threshold <- function(a, lambda) {
sign(a) * pmax(abs(a) - lambda, 0)
}
#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#' averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#' coefficients so far and all the Hessian matrices.
cost_lasso_update <- function(data_new, coef, cum_coef, cmatrix, lambda) {
p <- length(data_new) - 1
X_new <- data_new[1:p]
Y_new <- data_new[p + 1]
mu <- X_new %*% coef
cmatrix <- cmatrix + X_new %o% X_new
# B <- as.vector(cmatrix_inv%*%X_new)
# cmatrix_inv <- cmatrix_inv - B%o%B/(1+sum(X_new*B))
lik_dev <- as.numeric(-(Y_new - mu)) * X_new
coef <- coef - solve(cmatrix, lik_dev)
nc <- norm(cmatrix, type = "F") # the choice of norm affects the speed. Spectral norm is more accurate but slower than F norm.
coef <- soft_threshold(coef, lambda / nc)
cum_coef <- cum_coef + coef
return(list(coef, cum_coef, cmatrix))
}
#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_lasso <- function(data, b, lambda) {
p <- dim(data)[2] - 1
X <- data[, 1:p, drop = FALSE]
Y <- data[, p + 1, drop = FALSE]
resi <- Y - X %*% b
L <- sum(resi^2) / 2 + lambda * sum(abs(b))
return(L)
}
#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#' beginning, ending and between change points.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#' the Hessian matrix.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#' likelihood for each segment based on the change points guess.
segd_lasso <- function(data, beta, B = 10, trim = 0.025, epsilon = 1e-5, family = "gaussian") {
n <- dim(data)[1]
p <- dim(data)[2] - 1
Fobj <- c(-beta, 0)
cp_set <- list(NULL, 0)
set <- c(0, 1)
# choose the initial values based on pre-segmentation
index <- rep(1:B, rep(n / B, B))
coef.int <- matrix(NA, B, p)
err_sd <- act_num <- rep(NA, B)
for (i in 1:B)
{
cvfit <- glmnet::cv.glmnet(as.matrix(data[index == i, 1:p]), data[index == i, p + 1], family = family)
coef.int[i, ] <- coef(cvfit, s = "lambda.1se")[-1]
resi <- data[index == i, p + 1] - as.matrix(data[index == i, 1:p]) %*% as.numeric(coef.int[i, ])
err_sd[i] <- sqrt(mean(resi^2))
act_num[i] <- sum(abs(coef.int[i, ]) > 0)
}
err_sd_mean <- mean(err_sd) # only works if error sd is unchanged.
act_num_mean <- mean(act_num)
beta <- (act_num_mean + 1) * beta # seems to work but there might be better choices
X1 <- data[1, 1:p]
cum_coef <- coef <- matrix(coef.int[1, ], p, 1)
eta <- coef %*% X1
# c_int <- diag(1/epsilon,p) - X1%o%X1/epsilon^2/(1+sum(X1^2)/epsilon)
# cmatrix_inv <- array(c_int, c(p,p,1))
cmatrix <- array(X1 %o% X1 + epsilon * diag(1, p), c(p, p, 1))
for (t in 2:n)
{
m <- length(set)
cval <- rep(NA, m)
for (i in 1:(m - 1))
{
coef_c <- coef[, i]
cum_coef_c <- cum_coef[, i]
# cmatrix_inv_c <- cmatrix_inv[,,i]
cmatrix_c <- cmatrix[, , i]
k <- set[i] + 1
out <- cost_lasso_update(data[t, ], coef_c, cum_coef_c, cmatrix_c, lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1)))
coef[, i] <- out[[1]]
cum_coef[, i] <- out[[2]]
# cmatrix_inv[,,i] <- out[[3]]
cmatrix[, , i] <- out[[3]]
if (t - k >= 2) cval[i] <- neg_log_lik_lasso(data[k:t, ], cum_coef[, i] / (t - k + 1), lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1))) else cval[i] <- 0
}
# the choice of initial values requires further investigation
cval[m] <- 0
Xt <- data[t, 1:p]
cum_coef_add <- coef_add <- coef.int[index[t], ]
# cmatrix_inv_add <- diag(1/epsilon,p) - Xt%o%Xt/epsilon^2/(1+sum(Xt^2)/epsilon)
coef <- cbind(coef, coef_add)
cum_coef <- cbind(cum_coef, cum_coef_add)
# cmatrix_inv <- abind::abind(cmatrix_inv, cmatrix_inv_add, along=3)
cmatrix <- abind::abind(cmatrix, Xt %o% Xt + epsilon * diag(1, p), along = 3)
obj <- cval + Fobj[set + 1] + beta
min_val <- min(obj)
ind <- which(obj == min_val)[1]
cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
cp_set <- append(cp_set, list(cp_set_add))
ind2 <- (cval + Fobj[set + 1]) <= min_val
set <- c(set[ind2], t)
coef <- coef[, ind2, drop = FALSE]
cum_coef <- cum_coef[, ind2, drop = FALSE]
cmatrix <- cmatrix[, , ind2, drop = FALSE]
# cmatrix_inv <- cmatrix_inv[,,ind2,drop=FALSE]
Fobj <- c(Fobj, min_val)
}
# Remove change-points close to the boundaries and merge change-points
cp <- cp_set[[n + 1]]
if (length(cp) > 0) {
ind3 <- (1:length(cp))[(cp < trim * n) | (cp > (1 - trim) * n)]
if (length(ind3) > 0) cp <- cp[-ind3]
}
cp <- sort(unique(c(0, cp)))
index <- which((diff(cp) < trim * n) == TRUE)
if (length(index) > 0) cp <- floor((cp[-(index + 1)] + cp[-index]) / 2)
cp <- cp[cp > 0]
# nLL <- 0
# cp_loc <- unique(c(0,cp,n))
# for(i in 1:(length(cp_loc)-1))
# {
# seg <- (cp_loc[i]+1):cp_loc[i+1]
# data_seg <- data[seg,]
# out <- fastglm(as.matrix(data_seg[, 1:p]), data_seg[, p+1], family="binomial")
# nLL <- out$deviance/2 + nLL
# }
output <- list(cp)
names(output) <- c("cp")
return(output)
}
# Generate data from penalized linear regression models with change-points
#' @param n Number of observations.
#' @param d Dimension of the covariates.
#' @param true.coef True regression coefficients.
#' @param true.cp.loc True change-point locations.
#' @param Sigma Covariance matrix of the covariates.
#' @param evar Error variance.
#' @keywords internal
#'
#' @noRd
#' @return A list containing the generated data and the true cluster
#' assignments.
data_gen_lasso <- function(n, d, true.coef, true.cp.loc, Sigma, evar) {
loc <- unique(c(0, true.cp.loc, n))
if (dim(true.coef)[2] != length(loc) - 1) stop("true.coef and true.cp.loc do not match")
x <- mvtnorm::rmvnorm(n, mean = rep(0, d), sigma = Sigma)
y <- NULL
for (i in 1:(length(loc) - 1))
{
Xb <- x[(loc[i] + 1):loc[i + 1], , drop = FALSE] %*% true.coef[, i, drop = FALSE]
add <- Xb + rnorm(length(Xb), sd = sqrt(evar))
y <- c(y, add)
}
data <- cbind(x, y)
true_cluster <- rep(1:(length(loc) - 1), diff(loc))
result <- list(data, true_cluster)
return(result)
}
set.seed(1)
p <- 5
x <- matrix(rnorm(300 * p, 0, 1), ncol = p)
# Randomly generate coefficients with different means.
theta <- rbind(rnorm(p, 0, 1), rnorm(p, 2, 1))
# Randomly generate response variables based on the segmented data and
# corresponding coefficients
y <- c(
rbinom(125, 1, 1 / (1 + exp(-x[1:125, ] %*% theta[1, ]))),
rbinom(300 - 125, 1, 1 / (1 + exp(-x[(125 + 1):300, ] %*% theta[2, ])))
)
segd_binomial(cbind(x, y), (p + 1) * log(300) / 2, B = 5)$cp
#> [1] 125
fastcpd.binomial(
cbind(y, x),
segment_count = 5,
beta = "BIC",
cost_adjustment = "BIC",
r.progress = FALSE
)@cp_set
#> [1] 125
pelt_vanilla_binomial(cbind(x, y), (p + 1) * log(300) / 2)$cp
#> [1] 0 125
fastcpd.binomial(
cbind(y, x),
segment_count = 5,
vanilla_percentage = 1,
beta = "BIC",
cost_adjustment = "BIC",
r.progress = FALSE
)@cp_set
#> [1] 125
set.seed(1)
n <- 1500
d <- 5
rho <- 0.9
Sigma <- array(0, c(d, d))
for (i in 1:d) {
Sigma[i, ] <- rho^(abs(i - (1:d)))
}
delta <- c(5, 7, 9, 11, 13)
a.sq <- 1
delta.new <-
delta * sqrt(a.sq) / sqrt(as.numeric(t(delta) %*% Sigma %*% delta))
true.cp.loc <- c(375, 750, 1125)
# regression coefficients
true.coef <- matrix(0, nrow = d, ncol = length(true.cp.loc) + 1)
true.coef[, 1] <- c(1, 1.2, -1, 0.5, -2)
true.coef[, 2] <- true.coef[, 1] + delta.new
true.coef[, 3] <- true.coef[, 1]
true.coef[, 4] <- true.coef[, 3] - delta.new
out <- data_gen_poisson(n, d, true.coef, true.cp.loc, Sigma)
data <- out[[1]]
g_tr <- out[[2]]
beta <- log(n) * (d + 1) / 2
segd_poisson(
data, beta, trim = 0.03, B = 10, epsilon = 0.001, G = 10^10, L = -20, H = 20
)$cp
#> [1] 380 751 1136 1251
fastcpd.poisson(
cbind(data[, d + 1], data[, 1:d]),
beta = beta,
cost_adjustment = "BIC",
epsilon = 0.001,
segment_count = 10,
r.progress = FALSE
)@cp_set
#> [1] 380 751 1136 1251
pelt_vanilla_poisson(data, beta)$cp
#> [1] 0 374 752 1133
fastcpd.poisson(
cbind(data[, d + 1], data[, 1:d]),
segment_count = 10,
vanilla_percentage = 1,
beta = beta,
cost_adjustment = "BIC",
r.progress = FALSE
)@cp_set
#> [1] 374 752 1133
set.seed(1)
n <- 1000
s <- 3
d <- 50
evar <- 0.5
Sigma <- diag(1, d)
true.cp.loc <- c(100, 300, 500, 800, 900)
seg <- length(true.cp.loc) + 1
true.coef <- matrix(rnorm(seg * s), s, seg)
true.coef <- rbind(true.coef, matrix(0, d - s, seg))
out <- data_gen_lasso(n, d, true.coef, true.cp.loc, Sigma, evar)
data <- out[[1]]
beta <- log(n) / 2 # beta here has different meaning
segd_lasso(data, beta, B = 10, trim = 0.025)$cp
#> [1] 100 300 520 800 901
fastcpd.lasso(
cbind(data[, d + 1], data[, 1:d]),
epsilon = 1e-5,
beta = beta,
cost_adjustment = "BIC",
pruning_coef = 0,
r.progress = FALSE
)@cp_set
#> [1] 100 300 520 800 901
pelt_vanilla_lasso(data, beta, cost = cost_lasso)$cp
#> [1] 100
#> [1] 200
#> [1] 300
#> [1] 400
#> [1] 500
#> [1] 600
#> [1] 700
#> [1] 800
#> [1] 900
#> [1] 1000
#> [1] 0 103 299 510 800 900
fastcpd.lasso(
cbind(data[, d + 1], data[, 1:d]),
vanilla_percentage = 1,
epsilon = 1e-5,
beta = beta,
cost_adjustment = "BIC",
pruning_coef = 0,
r.progress = FALSE
)@cp_set
#> [1] 103 299 510 800 900