Skip to contents

Transcriptome analysis of 57 bladder carcinomas on Affymetrix HG-U95A and HG-U95Av2 microarrays

Usage

transcriptome

Format

A data frame with 2215 rows and 43 variables:

3

Individual 3

4

Individual 4

5

Individual 5

6

Individual 6

7

Individual 7

8

Individual 8

9

Individual 9

10

Individual 10

14

Individual 14

15

Individual 15

16

Individual 16

17

Individual 17

18

Individual 18

19

Individual 19

21

Individual 21

22

Individual 22

24

Individual 24

26

Individual 26

28

Individual 28

30

Individual 30

31

Individual 31

33

Individual 33

34

Individual 34

35

Individual 35

36

Individual 36

37

Individual 37

38

Individual 38

39

Individual 39

40

Individual 40

41

Individual 41

42

Individual 42

43

Individual 43

44

Individual 44

45

Individual 45

46

Individual 46

47

Individual 47

48

Individual 48

49

Individual 49

50

Individual 50

51

Individual 51

53

Individual 53

54

Individual 54

57

Individual 57

Source

<https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-TABM-147>

<https://github.com/cran/ecp/tree/master/data>

Examples

# \donttest{
if (requireNamespace("ggplot2", quietly = TRUE)) {
  result <- fastcpd.mean(transcriptome$"10", trim = 0.005)
  summary(result)
  plot(result)

  result_all <- fastcpd.mean(
    transcriptome,
    beta = (ncol(transcriptome) + 1) * log(nrow(transcriptome)) / 2 * 5,
    trim = 0
  )

  plots <- lapply(
    seq_len(ncol(transcriptome)), function(i) {
      ggplot2::ggplot(
        data = data.frame(
          x = seq_along(transcriptome[, i]), y = transcriptome[, i]
        ),
        ggplot2::aes(x = x, y = y)
      ) +
        ggplot2::geom_line(color = "steelblue") +
        ggplot2::geom_vline(
          xintercept = result_all@cp_set,
          color = "red",
          linetype = "dotted",
          linewidth = 0.5,
          alpha = 0.7
        ) +
        ggplot2::theme_void()
    }
  )

  if (requireNamespace("gridExtra", quietly = TRUE)) {
    gridExtra::grid.arrange(grobs = plots, ncol = 1, nrow = ncol(transcriptome))
  }
}
#> 
#> Call:
#> fastcpd.mean(data = transcriptome$"10", trim = 0.005)
#> 
#> Change points:
#> 177 264 394 534 578 656 788 811 869 934 960 1051 1141 1286 1319 1367 1567 1657 1724 1906 1972 1994 2041 2058 2143 2200 
#> 
#> Cost values:
#> 80.49071 38.37606 71.90419 109.9683 171.8534 18.56209 58.95214 3.133287 24.77084 49.27842 36.67618 63.41361 57.65488 91.34648 7.042687 46.13709 69.31514 141.4311 290.2077 77.60234 52.61751 41.31567 71.81727 13.09335 36.00007 14.8323 12.87647 
#> 
#> Parameters:
#>   segment 1 segment 2 segment 3 segment 4 segment 5 segment 6 segment 7
#> 1         0         0         0         0         0         0         0
#>   segment 8 segment 9 segment 10 segment 11 segment 12 segment 13 segment 14
#> 1         0         0          0          0          0          0          0
#>   segment 15 segment 16 segment 17 segment 18 segment 19 segment 20 segment 21
#> 1          0          0          0          0          0          0          0
#>   segment 22 segment 23 segment 24 segment 25 segment 26 segment 27
#> 1          0          0          0          0          0          0


# }